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An analytical theory is developed for a class of stable quasi-geostrophic vortices
propagating either in the westward direction with supercritical velocities

(
c̄ < −βR̄2

d

)
or eastward, where R̄d is the radius of deformation and β is the gradient of the
Coriolis parameter. The numerical spectral calculations, initiated by the theoretical
solutions, indicate that the supercritical vortices move initially with the predicted
velocity, but later slow down to the speed of the long planetary waves. The period
of time during which an eddy is propagating with its initial velocity is analysed
as a function of its strength and (initial) speed. The theoretical solution has a
distinctive streamline signature (‘alpha gyre’), which also appears in the final state
of the numerical calculations, including those for an initially completely symmetric
vortex placed on the β-plane.

1. Introduction
Among the most important characteristics of ocean eddies are their propagation

velocities and their long lifetimes, which allow eddies to play an important role
in large-scale mixing in the ocean. Agulhas eddies, for example, travel thousands
of kilometres, transporting mass, vorticity, salinity and heat anomalies (Gordon &
Haxby 1990). The observed westward drift of strong eddies is usually attributed to
the meridional variation of the Coriolis parameter, the so-called β-effect (see Su-
tyrin & Flierl 1994). It has also been suggested (Sutyrin 1987) that the appearance
of an azimuthal perturbation with mode number m = 1, caused by the β-effect,
is responsible for the vortex translation (this mode is also referred to as a dipolar
component or a vortex asymmetry). Estimates of the strength of such perturba-
tions in the observed vortices were made by Mied, Lindemann & Bergin (1983)
and Olson (1980). Recent measurements made with remote sensing imagery clearly
confirmed the existence of a significant dipolar component in the observed synoptic
eddies (Duncombe Rae et al. 1992; Hooker et al. 1995). However, the mechanism
which allows an initially symmetric eddy (see McWilliams & Flierl 1979) to develop
and maintain such north–south asymmetry for long periods of time is still poorly
understood.

Some insight into the problem of vortex propagation was obtained by studies of
exact permanent-form solutions with dipolar structure, referred to as modons (Stern
1975; Larichev & Reznik 1976). These were subsequently generalized by Flierl et al.
(1980) to include a superimposed axisymmetric circulation (a ‘rider’), but modons
with riders are unstable (Swenson 1987) and this severely limits their ability to serve
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as models for observed synoptic eddies which are usually stable and nearly monopolar
structures (Kamenkovich, Koshlyakov & Monin 1986).

In contrast to the exact (modon) solutions of the quasi-geostrophic equations,
there are asymptotic theories appropriate to the geophysical situation in which
the eddy translation speed is much smaller than the speed of the particles in-
side the eddy. For example, Stern (1987) found a barotropic solution for a piece-
wise uniform vorticity eddy bounded by two circular interfaces; a small separation
between the centroids of the two interfaces produced a dipole moment, resulting
in the propagation of the eddy. A generalization of this self-propagating f-plane
vortex obtained by Stern & Radko (1998, hereinafter referred to as SR) showed
that, for almost any compact circular vortex, an m = 1 disturbance resulting in
the rectilinear motion of the eddy can be found. SR also developed a weakly non-
linear theory indicating that the eddy is able to traverse distances much larger than
its radius without significant change of shape. Numerical experiments confirmed
this conclusion, as well as the stability of some members of the family of self-
propagating eddies. The specific dipolar component of such solutions will be referred
to as an ‘alpha-gyre’, which is a term used in atmospheric science to describe a
uniform (Gallilean) shift of a coordinate system (Willoughby 1992). On the other
hand, the alpha-gyre in SR represents a dynamical effect, since the shift of the
vorticity isopleths occurs only in the interior of the eddy and the exterior field is
truly dipolar. These alpha-gyres are characterized by proportionality of the dipolar
part of the streamfunction and the basic radial velocity in the interior. This impor-
tant feature will also appear in the equivalent barotropic β-plane model considered
herein.

Also important for understanding the dynamics of isolated eddies on the β-plane
is a ‘centroid theorem’ (McWilliams & Flierl 1979) which states that the centroid
of the interfacial height in a 11

2
-layered ocean should propagate westward with

exactly the Rossby wave signal velocity. Does this simple result imply that all
geostrophic isolated eddies (non-modons) should propagate with the speed of the
long Rossby waves? Such an assumption contradicts both observations (Chassignet,
Olson & Boudra 1990) and intuition, which suggests that the propagation velocity
should depend on various factors, such as the amplitude of the dipolar moment
of the eddy. In the present paper we will attempt to clarify the issue by initially
superimposing a certain dipolar component on a symmetric eddy, and numer-
ically computing the evolution of the system in time. The results will suggest
significant differences in the propagation of the centre of the eddy defined, for
example, by the maximum of the potential vorticity, and the aforementioned height
centroid.

This paper is organized as follows: in § 2 we introduce a theory for a quasi-
geostrophic vortex which has a small m = 1 component (i.e. ‘quasi-monopolar’), and
which is assumed to propagate without change of shape either westward with velocity
exceeding the speed of the long Rossby waves, or eastward; unlike a well-known
exact solution (Flierl et al. 1980) our vortex will be stable. In § 3 we present numerical
(spectral) calculations initiated by the theoretical solution. It will be shown that the
westward propagating supercritical (i.e. moving faster than the speed of the long
Rossby waves) eddies are able to preserve their velocity and dipolar moment for a
significant time, after which they slow down to the speed of the long Rossby waves. In
§ 4 we demonstrate that an initially axisymmetric equivalent barotropic eddy, under
the influence of a β-effect, develops the ‘alpha-gyre’ structure predicted by the analytic
theory.
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2. Equivalent-barotropic propagating vortices on the beta-plane
2.1. Formulation

Consider a mesoscale equivalent barotropic flow on the beta-plane that satisfies the
non-dimensional equation for conservation of potential vorticity:

∂

∂t
Q+ J(ψ,Q) = 0, (1)

where ψ is the streamfunction, and Q = ∆ψ − (1/R2
d)ψ + y is the quasi-geostrophic

potential vorticity; the horizontal coordinates here have been scaled by the eddy
radius R, and the time coordinate by β−1R−1. In most of the following calculations
we will consider the case where the non-dimensional Rossby radius of deformation
Rd = (g′H)1/2/fR equals unity, but this can easily be extended to any value of
Rd = O(1).

Let us rewrite the equation of motion in a coordinate system moving in the
x-direction with velocity c by applying the transformations

xold = xnew + ctnew , yold = ynew , told = tnew , ψold = ψnew − cynew .

Then in terms of the new variables (subscripts are dropped for simplicity), equation
(1) becomes

∂

∂t

(
∆ψ − 1

R2
d

ψ

)
+ J(ψ,∆ψ) + β̂

∂ψ

∂x
= 0, (2)

where

β̂ = 1 + c/R2
d

is referred to as a modified beta (see, for example, Sutyrin & Flierl 1994). As in SR,
an ‘asymptotically valid’ solution for a drifting system (∂/∂t = 0) will be sought, in
which case (2) becomes

J(ψ,∆ψ + β̂y) = 0. (3)

We consider separately the region inside the unit circle streamline, and the ex-
terior region with open streamlines surrounding the eddy. We assume that the total
streamfunction

ψ = ψ0(r) + ψ1(r) sin θ

is a superposition of a circularly symmetric (m = 0) ‘rider’ and a dipolar (m = 1
circular mode) part. The latter will be assumed to have relatively small amplitude in
the interior region.

2.2. Vortices propagating with the speed of long Rossby waves

It was demonstrated by SR that the steadily propagating solutions for the purely
barotropic f-plane could be applied to the case of the equivalent barotropic β-plane
model if the propagation velocity is exactly equal to the long Rossby wave (signal)
velocity. This result follows from (3), which for c = −R2

d reduces to J(ψ,∆ψ) = 0. The
latter equation is merely the stationary barotropic f-plane equation, for which stable
and almost monopolar solutions have been obtained by SR. The dipolar component
(m = 1) of those solutions that allow an eddy to propagate rectilinearly with the
speed of the long Rossby waves was found to be

ψ1(r, θ) = − 2R2
d

ū′(1)
ū(r) sin θ (r < 1),

ψ1(r, θ) = R2
d(

1
r
− r) sin θ (r > 1),

 (4)
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where the basic azimuthal velocity u(r) = ∂ψ0(r)/∂r is assumed to be compact (zero
in the exterior r > 1), and ū′(1−) 6= 0. The solution (4) is irrotational in the region
r > 1 and, therefore, exactly satisfies the stationary barotropic vorticity equation in
the exterior; in the interior (r < 1), however, the derivation of (4) assumes asymptotic
smallness of the dipolar component ψ1 compared to the basic flow ψ0. The linear
theory, therefore, additionally requires R2

d � max(ū(r)), which holds for typical values
of the oceanic parameters.

Thus, there exists a large class of stable quasi-monopolar vortices propagating
with the speed of long Rossby waves. This analytical solution for c = −R2

d is a very
important one since the numerical calculations of McWilliams & Flierl (1979), and
others, suggest that an initially stationary and symmetric equivalent barotropic vortex
on the beta-plane will eventually evolve towards a structure propagating westward
with the velocity of the long Rossby waves.

2.3. Vortices propagating with supercritical velocities

Now our objective is to modify the aforementioned asymptotic solution to consider
the general case c < −R2

d and c > 0; subcritical c are not considered here because of
the intrinsic time dependence due to far-field wave radiation. As indicated previously,
we look for stable solutions of (3), assuming that the streamfunction can be described
as a superposition of the dominant circularly symmetric rider and a small dipolar part.
Following SR, let us consider separately the region inside the unit circle streamline
and the exterior flow with open streamlines surrounding the eddy. In order to avoid
linearization in the far field (where the velocities are small), we use an exact solution
in the exterior. The derivation of an exact solution in the region r > 1 (Flierl et
al. 1980) requires a linear relationship between the arguments in the Jacobian (3):

ψ = (c/β̂)(∆ψ + β̂y), and in terms of ψ0, ψ1 this reduces to

ψ′′0 +
1

r
ψ′0 − β̂

c
ψ0 = 0 (r > 1), (5a)

and

ψ′′1 +
1

r
ψ′1 −

(
1

r2
+
β̂

c

)
ψ1 + β̂r = 0 (r > 1). (5b)

Equation (5a) is the well-known modified Bessel equation of zeroth order, which
allows for the exponentially decaying solution,

ψ0(r) = AK0(r/α) (r > 1), (6a)

where

1

α
=

(
β̂

c

)1/2

.

For the supercritical westward c < −R2
d or eastward c > 0 velocities, β̂/c is positive.

The exact solution of (5b) is a sum of its particular solution (cr) and the well-
behaved general solution of the corresponding homogeneous equation:

ψ1 = BK̂1

( r
α

)
+ cr (r > 1), (6b)

where K1 is the modified first order Bessel function. From the definition of α (above)
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we obtain the propagation velocity:

c = R2
d

α2

R2
d − α2

. (7)

To obtain the solution in the interior let us linearize equation (3) in the interior

region, considering ψ1, β̂, and c to be of the same order, and much smaller than ψ0

(but no assumption has yet been made about how close the propagation velocity is to
the speed of the Rossby waves). In terms of the dipolar streamfunction ψ1, equation
(3), linearized in the interior, can be written as

ū

(
ψ′′1 +

1

r
ψ′1

)
− ψ1

(
ū′′ +

1

r
ū′
)

= −β̂ūr (r < 1), (8)

where ū is the undisturbed azimuthal velocity.
The boundary conditions required to match the exterior field (6a,b) with the solution

of (8) in the interior will be those of the continuity of the azimuthal velocity, and
no flow normal to the interface. The latter condition yields ψ1(1

−) = ψ1(1
+) = 0, and

therefore

B = − c

K1(1/α)
. (9a)

The condition of continuity of velocity at r = 1 applied to the radially symmetric
part of the flow determines the constant A in equation (6a):

ū(1) =
∂ψ0

∂r

∣∣∣∣
r=1+

= −AK1(1/α)(1/α), (9b)

and when continuity is applied to the dipolar part of the flow, we obtain

ψ′1
∣∣
r=1− = −0.5B(K0(1/α) +K2(1/α))(1/α) +U = U

(
K0(1/α)

K1(1/α)α
+ 2

)
. (9c)

When β̂ in (8) is eliminated using ψ1(r) ≡ β̂Φ(r), the result is

ū

(
Φ′′ +

1

r
Φ′′
)
− Φ

(
ū′′ +

1

r
ū′
)

= −ūr, (10)

and the boundary conditions are

Φ(1) = 0, (11)

and

Φ′(1) = α
K0(1/α)

K1(1/α)
+ 2α2. (12)

Also, if ū(1) 6= 0, the boundary condition (11) applied to equation (10) yields:

Φ′′ + Φ′ = −1 at r = 1−. (13)

Since it is difficult to solve (10) directly to obtain Φ for a given ū, a more tractable
approach is to use an inverse procedure in which we assume a suitable class of
dipolar streamfunctions (Φ satisfying equations (11) and (13)), and then obtain the
basic velocity that allows for that disturbance. Thus, we are looking for a certain
type of (form preserving) solution rather than solving a problem with specified ū. For
this purpose, we try the following analytical function which vanishes at r = 0 and at
r = 1, and satisfies (13) for all γ:

Φ = −γr(1− r) exp(−2r) + λ(r) (r < 1), (14)
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Figure 1. Schematic diagram of the radial components of the m = 0 and m = 1 circular modes in
the interior (r < 1) of the vortex. û is the basic (azimuthal) velocity, normalized so that its maximum

value is equal to 1. Φ is the rescaled dipolar streamfunction (see the text). The dotted curve Φ̂ is
the dipolar streamfunction normalized so that its maximum value is equal to 1, so that it can be

compared with û. Φ, Φ̂ and ψ1 are exactly proportional to each other and ū is almost proportional
to them. For our solution (moving with a velocity comparable to the speed of the long Rossby

waves) Φ is large in most of the interior (Φ � 1). δ is the maximum difference between û and Φ̂,
which occurs at r = 1 (for our particular velocity profile) and also happens to be the maximum
value of the reversed (negative) velocity. Note that δ is quite small (see table 1).

where λ(r) = 0.5(γ exp(−2) − 1)r(1 − r)2 exp(γ(r − 1)) is small for the values of
parameters employed.

Now, we solve the second-order equation (10) for ū, using Φ as given by (14).
Since equation (10) is homogeneous with respect to ū, all its solutions (for a fixed
Φ) which satisfy condition ū(0) = 0 are proportional to each other, so that ū may
be normalized as indicated below. Equation (10) was solved numerically for different
γ using a second-order Runge–Kutta scheme (∆r = 0.001) and starting with the
conditions ū(0) = 0 and (say) ū′(0) = 1. This allowed us to obtain the interior basic
velocity up to some constant multiplier:

ū(r) = umax û(r) where umax = max
0<r<1

ū

and û is the basic velocity normalized so that the velocity maximum is equal to 1. The
computed velocity profiles in all the experiments performed had a structure like that
shown in figure 1, where the value of û(1) was a small negative number. Equation (12)
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(a)

(b)

Contour from –20 to 10 by 1.25

Contour from –20.4 to 9.0 by 1.5

Figure 2. Isopleths of the streamfunction γ = 36, c = −2, ūmax = 30 for the analytical solution of
§ 2. (a) In the frame of reference moving with the eddy. (b) In the stationary coordinate system.

then implicitly determined α, and the propagation velocity in units of speed of long
Rossby waves was computed from (7). The m = 0 field in the exterior of the vortex is
given by (6a), in which the constant A was determined from (9b). The exterior m = 1
field is provided by (6b). Thus, for a given γ, we determine the whole structure of the
eddy and its propagation velocity.

The streamlines of the solution are presented in figure 2 for Rd = 1, γ = 36, which
corresponds to the propagation velocity c = −2Rd = −2, and for umax = 30. The
structure of this vortex is quite similar to the barotropic solution of SR. Note that
the value of the mean negative azimuthal velocity is relatively small in figure 2, and
could probably not be detected in contemporary oceanic observations, thus such a
signature of the supercritical vortices is not inconsistent with those observations.

In our work, we concentrate on large values of the parameter γ for two reasons.
Large values of γ correspond to large α (see equation (12)), and large α require
propagation velocities (7) to be close to the speed of the long Rossby waves. These
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velocities are the most interesting ones, since the oceanic vortices are known to
propagate with comparable speeds. Also note that equation (10) is homogeneous
with respect to ū, but not homogeneous with respect to Φ. So for large Φ � 1,
equation (10) might be approximated by ū(Φ′′ + (1/r)Φ′)− Φ(ū′′ + (1/r)ū′) = 0 which
allows for only one well-behaved solution in which the dipolar streamfunction is
proportional to the velocity:

ū(r) = CΦ(r) (r < 1). (15)

This important feature of the propagating vortices is referred to as an ‘alpha gyre’
(see SR). Also note that the particular Φ employed (equation (14)) has an extremum
not too far from r = 0 (see figure 1), and equation (15) suggests the maximum of
the azimuthal velocity ū will also occur sufficiently close to r = 0. So, the vortex is
expected to be stable, as inferred from the result of Flierl (1988). Figure 1 reveals
how, for large γ, the functions Φ and ū can be approximately proportional to each
other, even though ū changes sign in the interval 0 < r < 1. Also note that large

values of Φ (figure 1) do not mean large values of ψ1 = β̂Φ, since as γ → ∞ (and

Φ→∞) β̂ → 0, and the dipolar moment ψ1 remains finite and much smaller than ψ0.

2.4. Significance of alpha-gyres

In the previous subsection we have shown that, in the limit c→ −R2
d (corresponding

to γ → +∞), the dipolar component of the streamfunction Φ is proportional to the
basic velocity ū. Let us see now how close the relationship between the m = 0 and
m = 1 modes is to the alpha-gyre relationship for other values of the propagation
velocity. Unfortunately, we cannot simply divide ū by Φ and check whether the ratio
is a constant because Φ is zero at r = 0, 1; instead we introduce another measure
indicative of the extent to which ū and Φ are proportional to each other. Let us
normalize both ū and Φ so that their maximum value will be equal to 1:

û =
ū

umax
, Φ̂ = − Φ

Φmax
,

where

umax = max
0<r<1

ū, Φmax = max
0<r<1

(−Φ).

(Φ̂ is presented in figure 1 by a dotted line). Then the difference

δ = max
0<r<1

|û− Φ̂|

will show how close our solution is to the alpha-gyre. Note that for the c = −R2
d

case, û = Φ̂ and, therefore, δ is exactly zero. The maximum difference between û(r)
and Φ̂(r) happens to occur at r = 1, therefore δ is also equal to the maximum
value of the negative basic (normalized) velocity. Table 1 shows how δ depends
on the propagation velocity (i.e. on the value of the parameter γ). We see that
the dipolar part of the streamfunction is nearly an alpha-gyre for a wide range of
propagation velocities, which include all the westward propagating eddies, and even
the fast eastward propagating solutions. The alpha-gyre relationship (15) means that
the interior undisturbed circular streamlines and vorticity isopleths (except those near
r = 1) are displaced in the y-direction by the same amount (see SR).

Another important feature of the 11
2
-layer solution is that it has a vanishing angular
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γ c δ = max |Φ̂− û| α

100 −1.19 0.0098 2.47
50 −1.53 0.017 1.70
30 −2.62 0.028 1.27
15 2.42 0.055 0.84
10 0.74 0.08 0.65

Table 1. The small values of δ show that the radial component of the streamfunction is similar to
the alpha-gyre. Comparison is made by normalizing both ū and Φ and computing the maximum
difference δ. The limit γ → +∞ corresponds to the vortices propagating exactly with the signal
velocity of the long Rossby waves, in which case the streamfunction Φ is exactly proportional to
the basic velocity.

momentum, or (if β̂ 6= 0)∫
2π

∫ +∞

0

ψ(r, θ)r dr dθ =

∫ +∞

−∞

∫ +∞

−∞
ψ dx dy = 0. (16)

This is proved by multiplying (10) with r and integrating (in the interval 0 < r < 1)
by parts to obtain ∫ 1

0

ū(r) r2 dr = −Φ′(1) ū(1). (17)

When equation (6a) is used to compute
∫ +∞

1
ū(r) r2 dr, and when the result is simplified

using the basic relationships between the Bessel functions (Abramowitz & Stegun
1979) and equation (12), we obtain:∫ +∞

1

ū(r) r2 dr =
ū(1)

K1(1/α)

∫ +∞

1

K1

( r
α

)
r2 dr = Φ′(1) ū(1).

Adding the last two results gives zero angular momentum, or (16).
Because of (16) our solution does not contradict the (aforementioned) centroid

theorem (McWilliams & Flierl 1979) which states that the centroid of any suffi-
ciently compact smooth structure should move exactly with the speed of the long
Rossby waves if its angular momentum is non-zero (the term ‘centroid’ here refers
to the interfacial density displacement).† (This theorem was subsequently rederived
by Cushman-Roisin, Chassignet & Tang 1990 and by Nycander & Sutyrin 1992.) It
is a commonly accepted notion that all the possible steadily propagating solutions
satisfying (16) are either dipolar vortices (such as the modons), or strongly unstable
structures (e.g. modon-with-a-rider solution of Flierl et al. 1980). This notion is
without basis, as our solution clearly demonstrates.

3. Numerical calculations
In the previous section we presented a class of quasi-monopolar eddies that are able

to propagate with arbitrary supercritical velocities. Now we examine numerically the

† The requirement of zero angular momentum also appears in another fundamental geophysical
theorem derived by Flierl, Stern & Whitehead (1983) who demonstrated that the barotropic com-
ponent of isolated beta-plane vortices cannot be monopolar, which was quantified by requirement
(16). The latter result, however, is not directly applicable to the case of a model with an infinitely
deep lower layer. The monopolar rotation in the thin upper layer can be compensated by a weak
motion in the lower layer. The limit of an infinite lower-layer depth corresponds to the absence of
motion there, creating a false impression of monopolar barotropic circulation in the model.
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stability of the eddy (since the conventional analytical normal mode analysis of such
a problem appears to be intractable), and determine the extent to which our linear
steady-state solution is realizable in the sense of an initial-value calculation. This work
extends that of McWilliams & Flierl (1979), Mied & Lindemann (1979), and others
which suggest that a monopolar quasi-geostrophic eddy on a β-plane evolves to a
structure propagating with the speed of long Rossby waves. The long-time evolution
of an eddy is especially interesting in our case since the angular momentum (16) is
zero and, therefore, the eddy is free from the restriction on the propagation velocity
posed by the centroid theorem.

3.1. Numerical experiments initiated by the steady-state solution

The numerical calculations have been performed using a pseudo-spectral code (Canuto
et al. 1987) in which the spatial operators were exactly inverted in Fourier space. The
quasi-geostrophic potential vorticity equation (1) has been discretized on a 128× 128
biperiodic grid with grid spacing ∆x = ∆y = 0.05. A fourth-order Runge–Kutta
scheme with timestep ∆t = 0.003 was used for integration in time. Numerical stability
of the code was controlled by the dissipational functional ν∆nψ, with n = 4 and
ν = 5 × 10−8, added to the right-hand side of (1). The experiments were initiated
by the linear solution presented in the previous section and the calculations were
confined to the case where the radius of deformation is the same as the radius of the
eddy. In the following experiments we normalized the symmetric part of the solution
by taking the successive values of velocity maximum to be 10, 20, 30 or 40 units;
this range describes mid-ocean vortices having a maximum radial velocity of about
50–120 cm s−1 and propagating with a speed of 2–5 cm s−1.

As we can see from figure 3 the vortex, whose ūmax = 30 and c = −2R2
d = −2

initially, is moving almost exactly in the westward direction (similar behaviour was
seen in most of the experiments made with westward propagating vortices), and only
after a sufficiently large period of time was a northward component of propagation
velocity observed. This feature distinguishes our experiments from those initiated by
the completely symmetric vortices (e.g. McWilliams & Flierl 1979; Mied & Lindemann
1979) in which the initial motion was northward (southward for the anticyclones).

The x-coordinate of the potential vorticity maximum for the calculation in figure 3 is
given by the thick line curve in figure 4; the thin solid line corresponds to propagation
with the theoretical velocity (see § 2). Although theoretical and observed velocities
agree initially, the latter eventually reduces to the speed of the long Rossby waves
(dashed line in figure 4). A similar decay has been observed in all experiments with
westward propagating vortices; in some cases the eddies slowed down to a speed of
less than −R2

d , but the difference was small enough to be attributed to numerical
effects, such as artificial periodicity. Thus, the foregoing calculations indicate that
motion with the speed of the long Rossby waves is in fact a preferred state for strong
vortices. The eddy fails to maintain the supercritical velocity predicted by the linear
theory because the latter is not uniformly valid in time (see Stern & Radko 1998 for
an estimate of the period of validity of a similar steady-state eddy model).

3.2. Timescale of adjustment to the propagation with the speed of the long Rossby
waves

Define t∗ as the time when the actual propagation velocity (c∗) drops to the average
of the initial (c < 0) velocity and the Rossby wave velocity −R2

d:

c∗ = 0.5(c− R2
d).
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Figure 3. Numerical solution of the equivalent-barotropic vorticity equation. Streamlines of the
westward propagating vortex at t = 0.3, 0.9, 2.1 and 3.0. The contour interval is 2.5. Positive contours
are solid lines. The initial propagation velocity is twice the speed of the long Rossby waves. The
maximum azimuthal velocity (initially) is 30 in units of the speed of the Rossby waves. Note that
initially the eddy is preserving its shape (compare with figure 2 b).

This quantity t∗ can be thought of as a period of time when the eddy retains the
memory of its initial conditions. We performed a series of experiments with different
values of the strength of the basic symmetric azimuthal current and the (initial)
propagation velocity. The results (table 2) show that for westward eddies, t∗ increases
with ū and then levels off or decreases. Maximum t∗ occurs at high ū when the
propagation velocity is small, but is shifted to relatively low ū when the velocity
is large. We believe that these calculations (t∗) adequately represent the timescale
involved in the adjustment of a β-plane vortex towards the final state, but the
initialization based on our analytical (linear) theory may introduce a biased effect.
From table 2 we find that our vortex is able to preserve its initial speed throughout 30
revolutions of the particles (with maximum velocity) around the centre, and during
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Figure 4. , x-coordinate of the centre of the vortex as a function of time for zero angular
momentum initialization; ——, coordinate of a point moving with the theoretical velocity; – – – –,
coordinate of a point moving with the velocity of the long Rossby waves; · · ·, experiment made with
the ‘pure alpha-gyre’ solution (see equation (18)). In both experiments the vortex is initially moving
with the predicted theoretical velocity; later on, the vortex slows down to the speed of the long
Rossby waves. The numerical experiments were made for westward propagating vortices, moving
initially with a propagation velocity twice the speed of the long Rossby waves and a maximum
azimuthal velocity 30 times as great (see also figure 3).

c umax = 10 umax = 20 umax = 30 umax = 40

1.5 5 14 14 15
2.0 5 18 14 14
2.5 5 20 13 9

−1.0 >8 7.1 > 8 3.1
−2.0 >8 > 8 3.1 3.8

Table 2. The upper part of the table, for westward vortices, gives the value of t∗ as a function of
non-dimensional vortex strength umax and initial propagation velocity c. The lower part of the table
(last two rows), for vortices initially moving eastward, gives the total propagation distance (see text)
as a multiple of the eddy radius.

this time the vortex can travel a distance of up to 4 radii. The eddy will, of course,
continue propagating westward much further than this, but with a lower speed.

Unlike the westward vortices the eastward eddies cease propagating (to the east)
after going a finite distance (table 2). For these vortices the natural criterion of their
ability to remember the initial conditions is the maximum eastward displacement. In
eight experiments made with eastward vortices, the propagation distance was more
than 8 radii in four runs. Unlike the westward propagating cyclonic vortices, the
eastward ones (not shown) exhibit significant deflection to the north. This displace-
ment results in the decrease of the cyclonic rotation, while the amplitude of the



On the propagation of oceanic mesoscale vortices 51

small anticyclonic companion increases, as required by the conservation of potential
vorticity.

3.3. Effect of the non-zero angular momentum

As indicated, the eddy used to initiate the previous spectral calculations had zero
angular momentum (as required by the centroid theorem (McWilliams & Flierl 1979)
for steady supercritical propagation). The possibility of different dynamics for eddies
with finite angular momentum is now considered by using an eddy whose dipolar
component (and therefore propagation velocity) is exactly the same as given in § 2
(see equations (6b) and (14)), but whose basic azimuthal velocity is changed so that
it is positive everywhere in the interior (r < 1) and zero in the exterior (r > 1). The
technically simplest way to make such a change is to assume a ‘pure’ alpha-gyre
relationship between m = 0 and m = 1 modes:{

ū(r) = CΦ(r) (r < 1),
ū(r) = 0 (r > 1),

(18)

where Φ is still given by (14) and C is an arbitrary (sufficiently large) number. As
table 1 shows (see also figures 1 and 2) this alteration only makes a small change in
the m = 0 mode, but the new eddy (18) does not satisfy condition (16) of the centroid
theorem.

Using the previous spectral code we computed the evolution of this new initial state
whose strength and the propagation velocity were the same as for the vortex in figure
3. The centre of the eddy, defined by the point of maximum potential vorticity and
shown by the dotted line in figure 4, moves for a significant time with the velocity
given by the previous analytic theory, but later it slows down to a speed which is
slightly less than that of the long Rossby waves. The period of time needed for such a
change in propagation velocity is about 1 time unit, which is less than the adjustment
time for a zero angular momentum eddy (solid line in figure 4). During this time,
however, the eddy can propagate a distance of about one diameter and the particles in
the interior are able to perform up to 15 revolutions around the centre. This example
shows how the ‘local’ (and more physically significant) centre of the eddy can move
with a speed different from that required by the ‘global’ interfacial centroid theorem.

The robustness of these conclusions from the 1 1
2
-layer model has been examined

by extending the numerical experiments to a two-layer model. The results for runs
made with 1 : 4 and 1 : 8 upper/lower layer depth ratios were in qualitative agreement
with the present equivalent barotropic calculations, when the initial conditions were
similar. Radko (1997) gives details of the two-layer calculations.

4. Development of the dipolar component on the beta-plane vortices
In our numerical calculations, as well as in the other cited experiments, the eddy

propagation speed evolves to that of the long Rossby waves. Since it was shown (§ 2)
that the critical and slightly supercritical eddies may be of the specific ‘alpha-gyre’
type, the question arises as to the extent to which the final state contains the alpha-
gyre component. To answer this we will Fourier analyse numerical solutions for the
evolution of an initially symmetric vortex on the β-plane.

The main difficulty here, however, is that when we decompose the streamfunction
field into the circular Fourier components, it is difficult to accurately determine the
relevant m = 1 circular mode, since its amplitude is very sensitive to the chosen
position of the polar centre. Additional complications arise if (as occurs in our
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analytical solution) the interior structure of the vortex is almost uniformly shifted
relative to its boundary (r = 1). Then the only way to determine such a shift is to
first calculate the coordinates of the centre from the vortex exterior and then relate to
the inner structure of the eddy. Most methods for determining the centre of an eddy
(such as the alpha-gyre closure method in Willoughby (1992), or the centre of mass
estimate in Hooker & Olson (1984)) are based on the information from the area which
includes the eddy interior. Since now it is necessary to introduce a procedure that
estimates the position of the polar centre of an eddy in a way which does not depend
on the details of the interior field, we shall pivot the analysis about the bounding
streamline of the eddy.

We first consider the evolution of an initially symmetric compact equivalent baro-
tropic vortex on the β-plane (following the initial-value calculations of McWilliams
& Flierl (1979) for a Gaussian vortex). The integration in time of the equivalent-
barotropic vorticity equation (1) was performed using the pseudo-spectral code de-
scribed and used in § 3, and initialized by the azimuthal velocity field:

u(r) = ar(1− r) e−2r (r < 1),
u(r) = 0 (r > 1).

The value of a was chosen to give a maximal azimuthal velocity equal to 20, which
adequately represents an average oceanic eddy. The radial velocity was zero initially
and the radius of deformation (again) was Rd = 1.

As expected, this vortex starts to move northward, then gradually turns to the west,
and by time t = 17.5 its motion is almost exactly westward. The vortex motion is
accompanied by a radiation of Rossby waves in a wake behind the vortex, and this
radiation reduces the strength of the vortex by 10 % at t = 7.5. At this time the vortex
approaches the velocity of the longest Rossby waves (based on the finite x-boundaries
in our computational domain), and subsequently the maximum azimuthal velocity
changes very slowly in the later stage of the experiment. The scenario of the evolution
of a compact vortex described above agrees qualitatively with the results obtained by
McWilliams & Flierl (1979) for the Gaussian vortex.

The large azimuthal velocities of this strong eddy result in the formation of two
distinct regions: a region of trapped fluid in the interior of the vortex characterized
by closed streamlines (in the moving coordinate system), and an outer region with
open streamlines. Let us define the centre of an eddy as the centroid of an area
bounded by the largest closed streamline in a frame of reference moving with an
eddy. This definition is consistent with the one we used in § 2, when the condition
of no flow normal to the interface r = 1 was prescribed. A method (Radko 1997)
which allows us to efficiently estimate the coordinates of such a streamline assumes
that the largest closed streamline is almost circular (owing to the well-known (Sutyrin
1989) symmetrization property of intense vortices), which will be confirmed in our
numerical experiments. The actual numerical procedure involves a ‘shooting method’,
in which we consider a large number of trial centres (x0, y0) in the interior of the
eddy and check which one is a centre of the largest closed circular streamline.

This technique was applied to the streamfunction field at t = 7.5, 12.5 and 17.5 to
obtain the coordinates of the centre of the vortex, and figure 5 presents the streamlines
in the stationary system at t = 17.5. The square denotes the point of maximum
relative vorticity, and the small circle marks the centre of the vortex computed by our
method. We can see that the inner streamlines are shifted southward with respect to
our computed centre. The streamfunction in the moving system (not shown), obtained
from ψstationary = ψmoving − cy, clearly demonstrates that the interior streamlines are
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Contour from –31.25 to 1.25 by 1.25

ψmax = 0.528

Figure 5. The streamlines in a stationary coordinate system of the vortex which evolved to an
almost steady propagating structure at t = 17.5 from a circularly symmetric initial state. The square
denotes the point of the maximum vorticity and the circle denotes the centre of the eddy computed
using the technique described in § 4. The scale of the plot (in both x and y) is 3.5 times the vortex
radius. Note the pressure maximum leading to a current reversal of small magnitude.

almost circular, but they are shifted southward compared to the position of the largest
closed streamline; this is a characteristic feature of an alpha-gyre.

After the coordinates of the ‘correct’ centre of the eddy were obtained, the stream-
function field was interpolated to the polar coordinates grid using the collocation
approximation with the centre of the polar coordinate system placed at the centre of
the vortex. The polar coordinates grid had ∆r = 0.025, ∆θ = 2π/32. For each r the
streamfunction was Fourier analysed in θ, using the fast Fourier transform. Of partic-
ular interest for our problem are the m = 0 and m = 1 Fourier components. Figures
6(a), 6(c) and 6(e) show the radial part of the sin θ component of the streamfunction;
and figures 6(b), 6(d ) and 6(f ) show the first derivative of the m = 0 mode, which
is the basic azimuthal velocity, at times t = 7.5, 12.5 and 17.5, respectively. From
figure 6 we can clearly see that the radial component of the dipolar streamfunction
is proportional to the basic velocity. Thus, the propagating solution resulting from
the evolution of the symmetric vortex on the beta-plane obeys our linear theory: the
dipolar part of the streamfunction is indeed an alpha-gyre. This particular result is
not very sensitive to the accuracy with which we determined the coordinates of the
centre of the vortex. If there is a certain error in the coordinates of the centre, it
would result in the appearance of an additional component of the dipolar part of
the streamfunction which is again spatially distributed in the form of an alpha-gyre.
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Figure 6. Circular Fourier analysis of the streamfunction field of the westward propagating vortex
which evolves from the initially symmetric eddy on the beta-plane. (a) Radial part ψ1(r) of the
dipolar component (m = 1 mode) of the streamfunction as a function of r. The non-dimensional
value of time t = 7.5. (b) Circularly symmetric part of the velocity field ū(r) (m = 0 mode). The
dipolar streamfunction is proportional to the azimuthal velocity, in agreement with the predicted
alpha-gyre relationship. (c) The same as (a), but for t = 12.5. (d ) The same as (b), but for t = 12.5.
(e) The same as (a), but for t = 17.5. (f ) The same as (b), but for t = 17.5.

So the ‘correct’ m = 1 mode would be a difference between the two dipolar com-
ponents both of the alpha-gyre type and therefore it would also be an alpha-gyre.
The connection between rectilinear propagation and the alpha-gyre structure of an
eddy was suggested by our analytical theory for the supercritical eddies, and now
we have demonstrated numerically such a relation for the ‘naturally evolved’ slightly
subcritical eddy.

In our previous work (SR), a simple formula suggested as an estimate of the
propagation velocity of barotropic f-plane compact eddy is:

ψ′1(1) = −2c, (19)

where ψ1(r) denotes the radial part of the m = 1 mode. Furthermore, it was shown in
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§ 2 that this solution is immediately applicable to the equivalent barotropic β-plane
model if the propagation velocity is sufficiently close to the speed of the long Rossby
waves. For our ‘naturally evolved’ steady westward propagating eddy the error in the
propagation velocity computed from (19) compared to that measured experimentally
is 10 %, 26 % and 16 % for t = 7.5, 12.5 and 17.5, respectively. Therefore, (19) gives a
reasonably good estimate of the propagation velocity of the eddies, which provides an
indirect check of the numerical method employed above, and might also be applied
to the observations of oceanic eddies.

5. Conclusions and discussion
A perturbation theory for a nearly symmetric eddy on the β-plane shows that it

is able to propagate either westward, with a uniform speed exceeding that of long
planetary waves, or eastward. The alpha-gyre structure of the vortex is similar to
that of the propagating barotropic f-plane solution (SR), and can be characterized
by a uniform shift of the interior of the eddy in a direction perpendicular to the
direction of propagation. The numerical calculations in § 3 demonstrate the stability
and robustness of the solution, distinguishing it from the vortex consisting of a modon
with a rider (Flierl et al. 1980).

The numerical (spectral) simulations initiated with our analytical solution for
the supercritical vortices showed that the velocity of a westward propagating eddy
decreases slowly to a value equal to the phase speed of the long Rossby waves. These
analytical and experimental results complement previous numerical simulations using
initially symmetric vortices, which also evolved so as to propagate with the speed
of the planetary waves. The time (table 2) involved in the process of adjusting
to the final propagation speed depends on the strength of the vortex and on its
initial propagation velocity. Our vortex was able to retain its initial dipole moment
throughout 30 particle revolutions around the centre, while traversing a distance
of about four radii. Calculations in a realistic oceanic range of parameters showed
that the memory of initial conditions is longest for strong vortices when the initial
propagation velocities are close to the speed of the long Rossby waves, and for
vortices of moderate strength when the initial velocities are large. Of course, the eddy
continues propagating westward after reaching the long wave speed.

In connection with the ability of the vortices to propagate for significant times
with supercritical speeds, we remark that some of the supercritical eddies frequently
observed in the ocean move up to five times faster than the long Rossby waves
(Gordon & Haxby 1990; Olson & Evans 1986). Our results suggest that this might
reflect a stage when the eddies are moving with arbitrary velocities proportional to
an initial dipole (m = 1) mode, which may be generated by the mechanisms different
from the β-effect, such as interactions of those eddies with topography, boundaries
or currents (SR).

A supercritical eddy was observed in the South Atlantic ocean in 1989 (Duncombe
Rae et al. 1992). To the north of a dominant anticyclonic vortex was attached a
small cyclonic companion, and the whole structure was quite similar to what we have
suggested as a model of a propagating eddy (figures 2, 3). The observed propagation
velocity during April and May was 6.4 cm s−1, while the theoretical speed of the
westward translation estimated by Cushman-Roisin et al. (1990) was only 2 cm s−1.
In May–June, however, the observed ring did slow down to a speed of 2.1 cm s−1,
and this evolution agrees qualitatively with the scenario suggested by our simple
equivalent-barotropic model.
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In § 4 we demonstrated the development of an alpha-gyre in the evolution of
an originally symmetric vortex, and this result emphasizes the significance of our
propagating solutions presented in § 2. Our alpha-gyre eddies should no longer be
treated only as one possible form of the propagating vortices, these solutions could
be expected to appear in the evolution of any sufficiently strong and compact circular
vortex on the β-plane.

In the process of showing that symmetric eddies develop an m = 1 mode propor-
tional to the basic velocity in the interior we developed a new method of determining
the centre of an eddy. This method allows a polar Fourier analysis to be meaningfully
performed, whereby the relative displacement of the interior field of an eddy can be
obtained.
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